C2-C3	1.490 (12)	C14-C15	1.363 (15)
C3-C4	1.398 (13)	C15-C16	1.375 (15)
C3-C8	1.406 (12)	C16-C17	1.396 (13)
C4-C5	1.374 (15)	C18-C19	1.388 (11)
C5-C6	1.378 (17)	C18-C23	1.390 (11)
C6-C7	1.376 (18)	C19-C20	1.382 (12)
C7-C8	1.399 (12)	$\mathrm{C} 20-\mathrm{C} 21$	1.374 (12)
C8-C9	1.476 (13)	C21-C22	1.377 (14)
C9-C10	1.473 (12)	C22-C23	1.389 (13)
$\mathrm{Brl}-\mathrm{Cl}-\mathrm{C} 2$	112.7 (5)	C8-C9-C10	118.3 (8)
$\mathrm{Br} 1-\mathrm{Cl}-\mathrm{Cl} 0$	117.7 (6)	$\mathrm{Cl}-\mathrm{C} 10-\mathrm{C} 9$	119.1 (7)
$\mathrm{Brl}-\mathrm{Cl}-\mathrm{Cll}$	119.0 (5)	$\mathrm{Cl}-\mathrm{C10-C11}$	60.7 (5)
$\mathrm{C} 2-\mathrm{Cl}-\mathrm{C} 10$	118.8 (7)	C9-C10-C11	122.0 (7)
$\mathrm{C} 2-\mathrm{Cl}-\mathrm{C} 11$	119.4 (7)	C1-C11-C10	59.6 (5)
$\mathrm{Cl} 0-\mathrm{Cl}-\mathrm{Cl1}$	59.6 (5)	$\mathrm{C} 1-\mathrm{Cl1-Cl2}$	118.9 (7)
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{Cl}$	122.0 (7)	$\mathrm{C} 1-\mathrm{Cl1-C18}$	118.4 (6)
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$	120.8 (8)	$\mathrm{Cl}-\mathrm{Cl1-C12}$	116.6 (7)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	117.2 (7)	$\mathrm{C10}-\mathrm{C11-C18}$	121.1 (7)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	118.0 (8)	C12-C11-C18	112.6 (7)
C2-C3-C8	121.8 (8)	$\mathrm{C} 11-\mathrm{Cl} 2-\mathrm{Cl} 3$	120.9 (8)
C3-C8-C9	121.5 (8)	C11-C12-C17	119.5 (7)
C7-C8-C9	120.4 (9)	$\mathrm{C} 11-\mathrm{C} 18-\mathrm{C} 19$	121.1 (7)
$\mathrm{O} 2-\mathrm{C} 9-\mathrm{C} 8$	122.5 (8)	C11-C18-C23	119.7 (7)
$\mathrm{O} 2-\mathrm{C} 9-\mathrm{C} 10$	119.3 (8)		
$\mathrm{Brl}-\mathrm{Cl}-\mathrm{C} 2-\mathrm{Ol}$	23.3 (7)	$\mathrm{C} 3-\mathrm{C} 8-\mathrm{C} 9-\mathrm{O} 2$	165.3 (13)
$\mathrm{Br} 1-\mathrm{Cl}-\mathrm{C} 2-\mathrm{C} 3$	-155.5 (9)	C3-C8-C9-C10	-14.3(8)
$\mathrm{Br} 1-\mathrm{Cl}-\mathrm{Cl} 0-\mathrm{C} 9$	138.4 (9)	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{O} 2$	-13.6 (9)
$\mathrm{Brl}-\mathrm{Cl}-\mathrm{Cl} 0-\mathrm{Cll}$	-109.2 (7)	C7-C8-C9-C10	166.8 (12)
$\mathrm{Brl}-\mathrm{Cl}-\mathrm{Cl1}-\mathrm{Cl} 0$	106.9 (7)	$\mathrm{O} 2-\mathrm{C} 9-\mathrm{C} 10-\mathrm{Cl}$	-163.2 (12)
$\mathrm{Brl}-\mathrm{Cl}-\mathrm{Cl1}-\mathrm{Cl} 2$	1.2 (6)	$\mathrm{O} 2-\mathrm{C} 9-\mathrm{Cl}-\mathrm{Cl} 1$	125.0 (12)
$\mathrm{Br} 1-\mathrm{Cl}-\mathrm{Cl1}-\mathrm{Cl} 8$	-141.8(9)	C8-C9-C10-C1	16.4 (7)
$\mathrm{C10}-\mathrm{Cl}-\mathrm{C} 2-\mathrm{Ol}$	166.8 (11)	C8-C9-C10-C11	-55.4 (9)
$\mathrm{C} 10-\mathrm{Cl}-\mathrm{C} 2-\mathrm{C} 3$	-12.0 (7)	$\mathrm{Cl}-\mathrm{Cl} 0-\mathrm{Cll}-\mathrm{Cl}$	0.0 (5)
$\mathrm{C} 2-\mathrm{Cl}-\mathrm{C} 10-\mathrm{C} 9$	-3.4 (7)	$\mathrm{Cl}-\mathrm{C10}-\mathrm{Cl1}-\mathrm{Cl} 2$	109.5 (8)
$\mathrm{C} 2-\mathrm{Cl}-\mathrm{Cl} 0-\mathrm{Cl1}$	109.1 (8)	$\mathrm{Cl}-\mathrm{Cl0-Cl1-C18}$	-106.9(8)
$\mathrm{C} 11-\mathrm{Cl}-\mathrm{C} 2-\mathrm{Ol}$	-123.8(11)	C9-C10-C11-Cl	107.9 (9)
$\mathrm{C} 11-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	57.4 (8)	C9-C10-C11-Cl2	-142.6(11)
$\mathrm{C} 2-\mathrm{Cl}-\mathrm{Cl1}-\mathrm{Cl} 0$	-108.1 (8)	C9-C10-C11-C18	1.0 (7)
$\mathrm{C} 2-\mathrm{Cl}-\mathrm{Cl1}-\mathrm{C} 12$	146.3 (10)	$\mathrm{Cl}-\mathrm{Cl1}-\mathrm{Cl2}-\mathrm{Cl} 3$	109.6 (10)
$\mathrm{C} 2-\mathrm{Cl}-\mathrm{C} 11-\mathrm{C} 18$	3.2 (7)	$\mathrm{Cl}-\mathrm{C11-C12-C17}$	-74.9 (9)
$\mathrm{C} 11-\mathrm{Cl}-\mathrm{Cl} 0-\mathrm{C} 9$	-112.5 (8)	$\mathrm{Cl}-\mathrm{C11}-\mathrm{C18-C19}$	54.5 (8)
$\mathrm{Cl} 0-\mathrm{Cl}-\mathrm{Cl1}-\mathrm{Cl} 0$	0.0 (5)	$\mathrm{Cl}-\mathrm{C} 11-\mathrm{C} 18-\mathrm{C} 23$	-130.5 (10)
$\mathrm{C} 11-\mathrm{Cl}-\mathrm{C} 10-\mathrm{Cl1}$	0.0 (5)	$\mathrm{C10}-\mathrm{C11-C12-C13}$	41.3 (8)
$\mathrm{Cl} 0-\mathrm{Cl}-\mathrm{Cl1}-\mathrm{Cl2}$	-105.6(8)	$\mathrm{Cl0}-\mathrm{Cl1-C12-Cl}$	-143.3(11)
$\mathrm{C} 10-\mathrm{Cl}-\mathrm{C11}-\mathrm{C} 18$	111.3 (8)	$\mathrm{C10-C11-C18-C19}$	124.3(10)
$\mathrm{Ol}-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	13.5 (8)	$\mathrm{C10}-\mathrm{C11-C18-C23}$	-60.7(8)
$\mathrm{Ol}-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C8}$	-163.9 (12)	$\mathrm{Cl} 8-\mathrm{Cl1-C12-C13}$	$-105.4(10)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-167.6(11)	C18-C11-C12-C17	70.1 (9)
$\mathrm{C1}-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 8$	14.9 (8)	$\mathrm{C12-C11-C18-C19}$	-90.8 (9)
C2-C3-C4-C5	-178.2 (13)	$\mathrm{C} 2-\mathrm{C} 11-\mathrm{C} 18-\mathrm{C} 23$	84.3 (9)
C2-C3-C8-C7	177.2 (1.3)	$\mathrm{Cl1}-\mathrm{Cl} 2-\mathrm{Cl3-C14}$	177.5 (13)
C2-C3-- 88 --C9	-1.8(8)	C11 C12 C17-C16	-177.2(12)
C4-C3-C8-C9	-179.1 (13)	$\mathrm{C} 11-\mathrm{C} 18-\mathrm{C} 19-\mathrm{C} 20$	176.0 (12)
C6-C7-C8-C9	179.3 (14)	$\mathrm{C} 11-\mathrm{C} 18-\mathrm{C} 23-\mathrm{C} 22$	-176.5(12)

The highest residual electron-density peak is located near Brl. Data collection: CRYSTAN (Edwards et al., 1995). Cell refinement: CRYSTAN. Data reduction: CRYSTAN. Program(s) used to solve structure: CRYSTAN. Program(s) used to refine structure: CRYSTAN. Molecular graphics: CRYSTAN. Software used to prepare material for publication: CRYSTAN.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: OA1073). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. (1980). Acta Cryst. B36, 81-96.
Brown, H. C. \& Okamoto, Y. (1958). J. Am. Chem. Soc. 80, 4979 4987.

CAChe Scientific (1995). CAChe Work-System. Version 3.8. CAChe Scientific, Inc., Beaverton, Oregon, USA.
1.363 (15)
1.375 (15)
1.396 (13)

1390 (11)
1.382 (12)
1.374 (12)
1.377 (14)
1.389 (13)
118.3 (8)
60.7 (5)
122.0 (7).
118.9 (7)
118.4 (6)
116.6 (7)
112.6 (7)
120.9 (8)
121.1 (7)
119.7 (7)
165.3 (13)
$-14.3(8)$
166.8(12)
-163.2(12)
125.0 (12)
16.4 (7) 0.0 (5)
109.5 (8)
$-106.9(8)$
$107.9(9)$
142.6 (17)
109.6 (10)
-74.9(9)
$-130.5(10)$
41.3 (8)
-143.3(11)
-60.7 (8)
-105.4 (10)
-90.8(9)
84.3 (9)
$177.2(12)$
176.0 (12)

Acta Cryst. (1999). C55, 610-612

Absolute structure of an \boldsymbol{N}-pentenoyl benzisothiazole

Andrew B. Hughes, Maureen F. Mackay and
Narelle L. McCaffrey
Department of Chemistry, La Trobe University, Bundoora, Victoria 3083, Australia. E-mail: xraymm2@lure.latrobe. edu.au
(Received II September 1998; accepted 30 November 1998)

Abstract

The title compound, (+)-(3aR,6S,7aS)-1-(8,8-dimethyl-2,2-dioxo-1,3,3a,4,5,6,7,7a-octahydro-3a,6-methano-2,1-benzisothiazol-1-yl)-3,4-dimethyl-4-penten-1-one, $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{~S}$, was isolated as the major product from a copper-mediated conjugate addition reaction. The absolute stereochemistry of the N-pentenoyl side chain was established. The latter is extended and the cyclohexane ring adopts a boat conformation, whilst the benzisothiazole ring is between a half-chair and envelope.

Comment

As part of a project on the synthesis of a marine natural product, a diastereoselective conjugate addition was performed which resulted in the isolation of the title compound, (1), as a mixture of diastereoisomers (yield 53%). The conjugate addition was between the cuprate, generated in situ from 2-propenyl magnesium bromide and cuprous iodide, and the crotonyl sultam, (2). The major diastereoisomer of the title compound, $[\alpha]_{D}^{24}+64^{\circ}\left(c=0.06\right.$ in $\left.\mathrm{CHCl}_{3}\right)$, crystallised from a hexane solution of the product mixture. The minor diastereoisomer was easily removed as it remained dissolved in the mother liquors. The diastereoisomeric excess was approximately 50% (based on ${ }^{1} \mathrm{H}$ NMR integral ratios). An X-ray analysis of crystals of (1) was
Crabb, T. A. \& Patel, A. V. (1992). Rodd's Chemistry of Carbon Compounds, 2nd Suppl. to the 2nd ed., edited by M. Sainsbury. Vol. II A / B, ch. I, pp. 1-80. Amsterdam: Elsevier.
Edwards, C., Gilmore, C. J., Mackay, S. \& Stewart, N. (1995). CRYSTAN. A Computer Program for the Solution and Refinement of Crystal Structures. MacScience, Yokohama, Japan.
Meijere, A. (1979). Angen. Chem. Int. Ed. Engl. 18, 809-826.
Oshima, T., Tamada, K. \& Nagai, T. (1994). J. Chem. Soc. Perkin Trans. 1, pp. 3325-3333.
Tidwell, T. T. (1985). The Chemistry of the Cyclopropyl Group, edited by Z. Rappoport, pp. 565-632. New York: John Wiley \& Sons.
Wong, H. N. C., Hon, M.-Y., Tse, C.-W. \& Yip, Y.-C. (1989). Chem. Rev. 89, 165-198.
undertaken to establish the absolute stereochemistry of the new N-pentenoyl side-chain.

(1)

(2)

The structure of (1) is given in Fig. 1. This illustrates that the N-pentenoyl side-chain is extended, the torsion angles $\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11, \mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$ and C10-C11-C12-C13 being 150.1 (4), 171.6 (4) and $111.3(6)^{\circ}$, respectively. The cyclohexane ring adopts a fairly regular boat conformation with asymmetry parameter (Duax \& Norton, 1975) $\Delta C_{s}(\mathrm{C} 3 \mathrm{a})$ 10.6°. The distortions from a regular boat are due to the C 8 bridge from C 3 a to C 6 and the fusion to the isothiazole ring. The latter assumes a conformation between a half-chair and an envelope as indicated by the pseudo-rotation parameter (Altona et al., 1968) $\Delta=12.0^{\circ}$, with $\varphi_{m}=32.5^{\circ}$. Selected geometric parameters are given in Table 1. There being no hydrogen-bonding donors in the structure, the molecules are held together in the crystal by van der Waals interactions only.

Fig. 1. Perspective view of the molecular structure of (1) with displacement ellipsoids scaled to 50% probability and atom numbering. The H atoms are denoted by spheres of an arbitrary radius.

Experimental

A suspension of $\mathrm{CuI}(0.93 \mathrm{~g})$ in dry tetrahydrofuran (THF, 20 ml) was cooled to 213 K . A solution of 2-propenyl magnesium bromide (0.01 mol) in THF (5 ml) was slowly added to the suspension. The mixture was stirred at 213 K for 20 min , and then a solution of the crotonyl sultam, (2), (0.6 g , 2.1 mmol ; Oppolzer \& Barras, 1987) in dry THF (7 ml) was slowly added. The reaction mixture was stirred at 253 K for 3 h and the bright yellow solution was quenched by the addition of a saturated aqueous solution of ammonium chloride and then extracted with ether. The ethereal extracts were washed with brine, dried $\left(\mathrm{CaSO}_{4}\right)$, filtered and concentrated under reduced pressure to give the N-pentenoyl sultam as a colourless solid
which was a mixture of diastereoisomers (0.38 g , yield 53%). Recrystallization of a sample of the mixture from hexane afforded the major sultam as a single diastereoisomer, (1).

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{~S}$
$M_{r}=325.5$
Orthorhombic
$P 21_{1} 2_{1}$
$a=7.922(2) \AA$
$b=8.198(2) \AA$
$c=26.580(4) \AA$
$V=1726.2(7) \AA^{3}$
$Z=4$
$D_{x}=1.252 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}=1.25$ (1) $\mathrm{Mg} \mathrm{m}^{-3}$
D_{m} measured by flotation in
aqueous $\mathrm{K}_{2}\left[\mathrm{HgL}_{4}\right.$]

Data collection

Rigaku/AFC diffractometer

 $\omega / 2 \theta$ scansAbsorption correction:
Gaussian (SHELX76;
Sheldrick, 1976)
$T_{\text {min }}=0.539, T_{\text {max }}=0.628$ 2031 measured reflections
1695 independent reflections
1562 reflections with
$I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.054$
$w R\left(F^{2}\right)=0.152$
$S=1.055$
1695 reflections
206 parameters
H atoms: see text
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.1092 P)^{2}\right.$
$+0.5883 P$]
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.014$
$\Delta \rho_{\text {max }}=0.235 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.349 \mathrm{e}^{-3}$
$\mathrm{Cu} K \alpha$ radiation
$\lambda=1.5418 \AA$
Cell parameters from 25 reflections

$$
\theta=20.3-30.8^{\circ}
$$

$\mu=1.76 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prismatic
$0.48 \times 0.32 \times 0.32 \mathrm{~mm}$
Colourless
$R_{\text {int }}=0.029$
$\theta_{\text {max }}=64.8^{\circ}$
$h=0 \rightarrow 9$
$k=0 \rightarrow 9$
$l=0 \rightarrow 31$
3 standard reflections every 100 reflections intensity decay: none

Extinction correction: SHELXL93 (Sheldrick, 1993)

Extinction coefficient: 0.0058 (9)

Scattering factors from International Tables for Crystallography (Vol. C)
Absolute structure: Flack (1983)

Flack parameter $=0.01(4)$

Table 1. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

$\mathrm{N} 1-\mathrm{C} 9$	$1.387(5)$	$\mathrm{O} 2-\mathrm{S} 2$	$1.437(4)$
$\mathrm{N} 1-\mathrm{C} 7 \mathrm{a}$	$1.464(5)$	$\mathrm{O} 2^{\prime}-\mathrm{S} 2$	$1.422(4)$
$\mathrm{N} 1-\mathrm{S} 2$	$1.694(3)$	$\mathrm{S} 2-\mathrm{C} 3$	$1.795(4)$
$\mathrm{C} 9-\mathrm{N} 1-\mathrm{C} 7 \mathrm{a}$	$119.1(3)$	$\mathrm{O} 2-\mathrm{S} 2-\mathrm{N} 1$	$108.9(2)$
$\mathrm{C} 9-\mathrm{N} 1-\mathrm{S} 2$	$123.0(3)$	$\mathrm{O}^{\prime}-\mathrm{S} 2-\mathrm{C} 3$	$111.4(3)$
$\mathrm{C} 7 \mathrm{a}-\mathrm{N} 1-\mathrm{S} 2$	$112.2(3)$	$\mathrm{O} 2-\mathrm{S} 2-\mathrm{C} 3$	$111.0(2)$
$\mathrm{O} 2^{\prime}-\mathrm{S} 2-\mathrm{O} 2$	$118.0(3)$	$\mathrm{N} 1-\mathrm{S} 2-\mathrm{C} 3$	$96.0(2)$
$\mathrm{O} 2^{\prime}-\mathrm{S} 2-\mathrm{N} 1$	$109.2(2)$		
$\mathrm{N} 1-\mathrm{C}-\mathrm{C} 10-\mathrm{C} 11$	$150.1(4)$	$\mathrm{S} 2-\mathrm{N} 1-\mathrm{C} 7 \mathrm{a}-\mathrm{C} 3 \mathrm{a}$	$-27.6(4)$
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$	$171.6(4)$	$\mathrm{C} 7 \mathrm{a}-\mathrm{N} 1-\mathrm{S} 2-\mathrm{C} 3$	$12.6(3)$
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12-\mathrm{Cl3}$	$111.3(6)$	$\mathrm{C} 3 \mathrm{a}-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$3.8(5)$
$\mathrm{O} 9-\mathrm{C}-\mathrm{C} 10-\mathrm{C} 11$	$-29.2(6)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$-74.9(5)$
$\mathrm{C} 11^{\prime}-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$-13.6(8)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 7 \mathrm{a}$	$65.3(5)$
$\mathrm{N} 1-\mathrm{S} 2-\mathrm{C} 3-\mathrm{C} 3 \mathrm{a}$	$6.6(3)$	$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 7 \mathrm{a}-\mathrm{C} 3 \mathrm{a}$	$9.3(5)$
$\mathrm{S} 2-\mathrm{C} 3-\mathrm{C} 3 \mathrm{a}-\mathrm{C} 7 \mathrm{a}$	$-23.0(4)$	$\mathrm{C} 4-\mathrm{C} 3 \mathrm{a}-\mathrm{C} 7 \mathrm{a}-\mathrm{C} 7$	$-79.4(4)$
$\mathrm{C} 3-\mathrm{C} 3-\mathrm{C} 7 \mathrm{a}-\mathrm{N} 1$	$32.2(5)$	$\mathrm{C} 7 \mathrm{a}-\mathrm{C} 3 \mathrm{a}-\mathrm{C} 4-\mathrm{C} 5$	$69.7(5)$

The non-methyl and methyl-H atoms were given refined isotropic displacement factors of 0.083 (5) and 0.110 (7) \AA^{2}, respectively. 336 equivalent reflections within the range $h-9$ to $-6, k 0$ to $9, l-31$ to -1 were measured.

Data collection: Rigaku/AFC software (Rigaku, 1974). Cell refinement: Rigaku/AFC software. Data reduction: Rigaku/AFC software. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: SHELXL93.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: OB1002). Services for accessing these data are described at the back of the journal.

References

Altona, C., Geise, H. J. \& Romers, C. (1968). Tetrahedron, 24, 13-32.
Duax, W. L. \& Norton, D. A. (1975). Atlas of Steroid Structure, Vol. 1, pp. 18-199. New York: Plenum Press.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Oppolzer, W. \& Barras, J.-P. (1987). Helv. Chim. Acta, 70, 16661675.

Rigaku (1974). Rigaku/AFC software. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (1976). SHELX76. Program for Cŗstal Structure Determination. University of Cambridge, England.
Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crustal Structures. University of Göttingen, Germany.

Acta Cryst. (1999). C55, 612-613

(R)-N-(1-Hydroxybut-2-yl)pyrrolidine-2,5dione

Tullio Pllati, ${ }^{a}$ G. Biju Kumar ${ }^{b}$ and Amrish C. Shah ${ }^{b}$
${ }^{a}$ CNR-Centro per lo Studio delle Relazioni fra Struttura e Reattività Chimica, Via Golgi 19, 20133 Milano, Italy, and ${ }^{b}$ Department of Chemistry, Faculty of Science, MS University of Baroda, Baroda 390 002, India. E-mail: pila@sg1.csrsrc. mi.cnr.it

(Received I October 1998; accepted 11 November 1998)

Abstract

The asymmetric unit of the title compound, $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{NO}_{3}$, presents two independent molecules that give two intermolecular hydrogen bonds; the hydroxyl group of the first molecule is both acceptor and donor; that of the second one links to a carbonyl-O atom. This packing

accounts for the small differences between the two independent molecules.

Comment

The title compound, (I), has been prepared in order to extend our previous study (Biju Kumar et al., 1997) on the synthesis of novel ring systems and to obtain more information on the well known biological activity of succinimide derivatives (Khazhakyan \& Khachaturyan, 1987).

The asymmetric unit of this compound contains two independent molecules. We gave both the same numbering, changing only the suffix (A and B). Fig. 1 shows molecule A. The molecular chirality was assigned on the grounds of the reactants' chirality (see Scheme). Selected bond lengths and angles are reported in Table 1. The differences between equivalent geometric parameters of the two independent molecules are mostly less than three s.u.'s. Relevant exceptions are observed for the parameters involving ethyl groups for which a remarkable apparent bond shortening is found [C3B-C4B 1.382(10) versus C3A-C4A 1.499 (6) \AA in molecules B and A, respectively], due to the very large anisotropic displacement parameters affecting C3B and C4B. This probably means a dynamical disorder of the ethyl group of molecule B, but no attempt to split the two atoms was carried out. Larger differences are found for torsion angles, the most relevant ones being reported in Table 1. These differences are most probably due to packing forces; in fact, the environments of

Fig. 1. ORTEPII (Johnson, 1976) plot of molecule A with 50% probability displacement ellipsoids. (The numbering scheme for molecule B is the same as for A.)

